¹¹B NMR Study of $Ce_x La_{1-x} B_6$

K. Magishi, M. Kawakami^a, T. Saito, K. Koyama, K. Mizuno, and S. Kunii^b

Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770-8502, Japan ^a Department of Physics, Kagoshima University, Kagoshima 890-0065, Japan

Reprint requests to Dr. K. Magishi; Fax: 81-88-656-7298; E-mail: magishi@ias.tokushima-u.ac.jp

Z. Naturforsch. **57 a,** 441–446 (2002); received January 23, 2002

^b Department of Physics, Tohoku University, Sendai 980-8578, Japan

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

We have carried out 11 B NMR experiments on single crystals of $Ce_x La_{1-x}B_6$ in order to investigate the nature of phase IV. The NMR spectrum undergoes an appreciable broadening by the internal magnetic field as T is lowered in phase IV, and the nuclear spin-lattice relaxation rate, $1/T_1$, exhibits a sharp peak around the phase I-IV boundary. Also, in phase III the amplitude of the antiferromagnetic (AFM) moment is large enough even just below the phase IV-III transition, which suggests that the AFM moment grows considerably in phase IV. These results support the view that phase IV is an AFM ordered phase.

Key words: ¹¹B NMR; $Ce_x La_{1-x} B_6$; Phase IV; Nuclear Spin-lattice Relaxation; Antiferromagnetic Transition.